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Abstract— This paper presents the effect of end conditions on free vibration of thin rectangular laminated composite plates with exact 

displacement function. The work aims at obtaining the exact free vibration equation of different end conditions of thin rectangular laminated 

composite plate which will not depend on assumed shape function rather on the deflected shape of the plates. The equation derived in this 

paper is based classical plate theory which is widely used for analysis of thin plate. The governing equation for the thin laminated plate were 

obtain considering the total potential energy function which was in turn minimized to obtain equation for analysis of free vibration. Work 

examples were resolved considering different end conditions and orientation of 0/90/90/0. The results were compared for different boundary 

conditions. The maximum free vibrations coefficient obtained is 5.877 and the boundary condition that gave the value was CCCC while the 

minimum free vibration coefficient  obtained is 2.356 and the boundary condition that gave it was SSSF. From the results, it can be concluded 

that when the edges are free the resonating frequency of SSSS are more than 50% lower than the camped edges. Conclusively, the 

resonating frequency no matter the end condition decreases with increase in aspect ratio. 

Index Terms— End Condition, free vibration, laminated thin plate.   

——————————   ◆   —————————— 

1 INTRODUCTION                                                                     

Ibration is the most important modes of failure in plates, it 
plays a crucial role in engineering [1]. The basic concepts 
in the mechanics of vibration are space, time, and mass (or 

forces). When a body is disturbed from its position, then by the 
elastic property of the material of the body, it tries to come back 
to its initial position. In general, we may see and feel that nearly 
everything vibrates in nature; vibrations may be sometimes 
very weak for identification. On the other hand, there may be 
large devastating vibrations that occur because of man-made 
disasters or natural disasters such as earthquakes, winds, and 
tsunamis [2]; [3]. Vibration of thin laminated rectangular com-
posite plates is a special case of the more general problem of 
mechanical vibrations of thin composite plate. The free vibra-
tion of interest in rectangular laminated composite plate is the 
fundamental natural frequency. This is the value of externally 
(or naturally) induced vibrating frequency on the plate that 
causes it to resonate. Resonance is a dangerous phenomenon 
that makes a vibrating continuum to deflect excessively. Math-
ematically, resonance is a situation when the value of deflection 
of a vibrating continuum is infinity (undefined) [4]. Therefore, 
there exists a need for assessing the natural frequency response 
of structures [5]. 
 Free vibration of thin laminated plates has been studied by 

some researchers using various numerical approaches. The nu-
merical methods used so far includes Finite element method, 
State of art approach, Naviers and levy methods Etc [6]. The 
stated numerical methods have their limitations [7]. 
The Naviers’ and levys’ approaches can only be use when all 
the end conditions are simply supported or clamped edges or 
combination of simply supported and clamped edges respec-
tively [8]; [9]. The other end conditions that have free edges 
have received little or no attention, the little attention given to 
it was by assuming a shape function which the degree of accu-
racy is dependent on the probability of assuming the right dis-
placement shape function. If the assumed displacement shape 
function is right the results will be right, if not the reverse is the 
case.  The finite elements methods and state of art approaches 
are based on either the Naviers’ method or levy’ method [10]. It 
is generally believed that finite element methods give approxi-
mate results. Due to the gap created, recently, the exact dis-
placement method was published by Ibearugblem [11] with 
caption “Simple analysis of thin rectangular laminated compo-
site with exact displacement function”. In their method, Euler 
Bernoulli Equilibrium equation where used to formulate the ex-
act displacement function for thin laminated composite plate 
considering all the forces acting on the plate. They used poly-
nomial functional to derived the equation for each end condi-
tions. 
The present paper based its analysis on Kirchhoff's hypothesis 
which assumes that normal to the mid – surface of the plate be-
fore deformation remain straight and normal to the mid – sur-
face after deformation. These theories are widely used for the 
analysis of thin plates [12]. Also, polynomial shape function for 
different plate boundary conditions will be used in this analy-
sis. The shape function assumed that the laminated composite 
was made from materials that will not allow delamination of 
the components; that is to say that proper bonding of the 
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composite must always be achieved. The displacement function 
for free edges were obtained from polynomial shape function 
published from the work of Ibearugbulem et al [4]. 

 
Euler-Bernoulli equilibrium of beam theory was applied to 

formulate single displacement equation for computing the free 
vibration of thin laminated rectangular composite plates.  

The goal of this paper is to present the effect of different 
boundary conditions on the free vibration of thin rectangular 
laminated composite plate. It will also present a particular 
equation for obtaining the free vibration of thin rectangular 
laminated composite plate when pure bending and bucking are 
zeros.  

2.0 KINEMATICS OF A LAMINA OF THIN LAMINATED PLATE 

Some governing assumptions in this study is plane stress as-
sumption (normal stress along z-axis, x-z plane and y-z plane 
shear stresses are zeros) another assumption is normal strain 
along z axis is so small that neglecting it shall not affect the 
gross response of the plate. Itemizing the assumptions gives: 

i. 𝜎𝑧𝑧 = 0 

ii. 𝜏𝑥𝑧 = 0 

iii. 𝜏𝑦𝑧 = 0 

iv. 𝜀𝑧𝑧 = 0 

 
 Two in-plane displacements and one out-of-plane displace-
ment (u, v and w respectively) constitute the displacement 
field. From the fourth assumption it is taken that the out-of-
plane displacement (deflection) is constant along z-axis, which 
means it is not a function of z. However, the two in-plane dis-
placements (u and v) are functions of all coordinates (x, y and 
z). From assumption ii and iii, it is taken that corresponding x-
z and y-z planes' shear strains are zeros. Thus, the in-plane dis-
placements are given as shown in Equations 1 and 2: 

𝑢 = −𝑧
𝑑𝑤

𝑑𝑥
+ 𝑢0                               (1) 

𝑣 = −𝑧
𝑑𝑤

𝑑𝑦
+ 𝑣0                                (2) 

The in-plane displacements of the middle surface (u0 and v0) 
are not constants [11]. 

Using Equations 1 and 2 and the no-constant values of u0 and 
v0, in-plane strains are defined as shown in Equations 3,4 and 5: 

𝑥𝑥 =
𝑑𝑢

𝑑𝑥
= 𝑥𝑥

0 + 𝑥𝑥
𝑖 =

𝑑𝑢0

𝑑𝑥
− 𝑧

𝑑2𝑤

𝑑𝑥2
     (3) 

 

𝑦𝑦 =
𝑑𝑣

𝑑𝑦
= 𝑦𝑦

0 + 𝑦𝑦
𝑖 =

𝑑𝑣0

𝑑𝑦
− 𝑧

𝑑2𝑤

𝑑𝑦2
         (4) 

 


𝑥𝑦

= 𝜀𝑥𝑦 + 𝜀𝑦𝑥 = [−𝑧
𝑑2𝑤

𝑑𝑥𝑑𝑦
+

𝑑𝑢0

𝑑𝑦
] + [−𝑧

𝑑2𝑤

𝑑𝑥𝑑𝑦
+

𝑑𝑣0

𝑑𝑥
] 

 That is: 


𝑥𝑦

= 
𝑥𝑦
0 + 

𝑥𝑦
𝑖 =

𝑑𝑢0

𝑑𝑦
 +

𝑑𝑣0

𝑑𝑥
− 2𝑧

𝑑2𝑤

𝑑𝑥𝑑𝑦
         (5) 

2.1 Constitutive relations for a lamina of thin 
laminated plate 

The Hook's law equation for one lamina in laminated plate is 
given as shown in Equation 6: 

[

𝜎11

𝜎22

𝜏12

] = [

𝑒11 𝑒12 0
𝑒12 𝑒22 0
0 0 𝑒33

] [

𝜀11

𝜀22

𝛾12

]          (6) 

𝑊ℎ𝑒𝑟𝑒: 𝑒11 =
𝐸11 𝐸0⁄

1 − 𝜇𝑥𝑦𝜇𝑦𝑥

; 

𝑒12 =
𝜇21. 𝐸11 𝐸0⁄

1 − 𝜇𝑥𝑦𝜇𝑦𝑥

=
𝜇12. 𝐸22 𝐸0⁄

1 − 𝜇𝑥𝑦𝜇𝑦𝑥

; 

𝑒22 =
𝐸22 𝐸0⁄

1 − 𝜇𝑥𝑦𝜇𝑦𝑥

;  𝑒33 =
𝐺12

𝐸0

 

𝐸0 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑢𝑙𝑢𝑠. 𝑖𝑡 𝑐𝑎𝑛 𝑏𝑒 𝐸11 𝑜𝑟 𝐸22. 
Eij and 𝜇𝑖𝑗are the moduli of elasticity and Poisson’s ratios of 
the anisotropic lamina. Equation 6 is transformed from the local 
coordinate (1-2 coordinate) using the transformation matrix [T], 
Equation 6 is transformed from (1-2 local) coordinate system to 
(x-y global) coordinate system as in Equation 7 as shown by Ku-
biak [13]. 

[

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦2

] = [𝑇]−1 [

𝑒11 𝑒12 0
𝑒12 𝑒22 0
0 0 𝑒33

] [𝑇]−𝑇 [

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

]   (7) 

Where; the transformation matrix, [T] is defined as shown in 

Equation 8: 

[𝑇] = [
𝑚2 𝑛2 2𝑚𝑛
𝑛2 𝑚2 −2𝑚𝑛

−𝑚𝑛 𝑚𝑛 (𝑚2 − 𝑛2)
]           (8) 

𝑊ℎ𝑒𝑟𝑒:     𝑚 = 𝐶𝑜𝑠𝜃 𝑎𝑛𝑑 𝑛 = 𝑆𝑖𝑛𝜃  

Substituting Equation 8 into Equation 7 gives Equation 9: 

[

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

] = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

] [

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

]                   (9) 

Where: 

𝑎11 = 𝑒11𝑚
4 +  2𝑚2𝑛2(𝑒12 + 2𝑒33) + 𝑒22𝑛

4 

𝑎12 = 𝑒12𝑚
4 + 𝑚2𝑛2[𝑒11 + 𝑒22 − 4𝑒33] + 𝑒12𝑛

4 

𝑎13 = 𝑚3𝑛[𝑒11 − 𝑒12 − 2𝑒33] + 𝑚𝑛3[𝑒12 − 𝑒22 + 2𝑒33] 

𝑎21 = 𝑒12[𝑚
4 + 𝑛4] + 𝑚2𝑛2[𝑒11 + 𝑒22 − 4𝑒33] 

𝑎22 = 𝑒22𝑚
4 + 2𝑚2𝑛2 [𝑒12 + 2𝑒33] + 𝑒11𝑛

4 

𝑎23 = 𝑚3𝑛[𝑒12 − 𝑒22 + 2𝑒33] + 𝑚𝑛3[𝑒11 − 𝑒12 − 2𝑓12] 

𝑎31 = 𝑚3𝑛[𝑒11 − 𝑒12 − 2𝑒33] + 𝑚𝑛3[𝑒12 − 𝑒22 + 2𝑒33] 

𝑎32 = 𝑚3𝑛[𝑒12 − 𝑒22 + 2𝑒33] + 𝑚𝑛3[𝑒11 − 𝑒12 − 2𝑒33] 
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𝑎33 = 𝑚2𝑛2[𝑒11 − 2𝑒12 + 𝑒22 − 2𝑒33] + 𝑒33[𝑚
4 + 𝑛4]   

 
Substituting Equations 3, 4 and 5 into Equation 9 gives Equation 
10: 

[𝜎] = [

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜏𝑥𝑦

] = 𝐸0[𝑎𝑖𝑗][]                     10𝑎 

Where: 

[𝑎𝑖𝑗] = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

]      11𝑎 

[] = [

𝜀𝑥𝑥

𝜀𝑦𝑦

𝛾𝑥𝑦

] =

[
 
 
 
 
 
 

𝑑𝑢0

𝑑𝑥
− 𝑧

𝑑2𝑤

𝑑𝑥2

𝑑𝑣0

𝑑𝑦
− 𝑧

𝑑2𝑤

𝑑𝑦2

(
𝑑𝑢0

𝑑𝑦
 +

𝑑𝑣0

𝑑𝑥
) − 2𝑧

𝑑2𝑤

𝑑𝑥𝑑𝑦]
 
 
 
 
 
 

                     11𝑏 

3.0 Total potential energy functional for a lami-
nated thin rectangular plate 

The total potential energy functional for a laminated thin rec-

tangular plate is given as shown in Equation 12: 

Π =
1

2
∭[𝜎][]  𝑑𝑥 . 𝑑𝑦 . 𝑑𝑧 −

𝑚𝜆2

2
∬(𝑤)2   𝑑𝑥 𝑑𝑦     12 

Substituting equations 10 and 11 into equation 12 gives Equa-

tion 13: 

Π =
𝐸0

2
∭[]𝑇[𝑎𝑖𝑗][]  𝑑𝑥 . 𝑑𝑦 . 𝑑𝑧

−
𝑚𝜆2

2
∬(𝑤)2   𝑑𝑥 𝑑𝑦         13 

Carrying out the multiplication and closed domain integration 

of Equation 13 with respect to z gives Equation 14: 

Π =
𝐸0𝑡

3

2
∬{ (

𝐴11

𝑡2
[
𝑑𝑢0

𝑑𝑥
]
2

+ 2
𝐴12

𝑡2

𝑑𝑢0

𝑑𝑥

𝑑𝑣0

𝑑𝑦
+

𝐴33

𝑡2
[
𝑑𝑢0

𝑑𝑦
]
2

 

+ 2
𝐴33

𝑡2

𝑑𝑢0

𝑑𝑦

𝑑𝑣0

𝑑𝑥
+

𝐴33

𝑡2
[
𝑑𝑣0

𝑑𝑥
]
2

+
𝐴22

𝑡2
[
𝑑𝑣0

𝑑𝑦
]
2

) 

−2(
𝐵11

𝑡

𝑑𝑢0

𝑑𝑥
.
𝑑2𝑤

𝑑𝑥2
+

(𝐵12 + 2𝐵33)

𝑡

𝑑𝑢0

𝑑𝑦

𝑑2𝑤

𝑑𝑥𝑑𝑦

+
(𝐵12 + 2𝐵33)

𝑡

𝑑𝑣0

𝑑𝑥

𝑑2𝑤

𝑑𝑥𝑑𝑦
+

𝐵22

𝑡

𝑑𝑣0

𝑑𝑦

𝑑2𝑤

𝑑𝑦2
) 

+(𝐷11 [
𝑑2𝑤

𝑑𝑥2
]

2

+ 2(𝐷12 + 2𝐷33) [
𝑑2𝑤

𝑑𝑥𝑑𝑦
]

2

+ 𝐷22 [
𝑑2𝑤

𝑑𝑦2
]

2

 ) 

+2 ( 
𝐴13

𝑡2

𝑑𝑢0

𝑑𝑥

𝑑𝑢0

𝑑𝑦
+

𝐴13

𝑡2

𝑑𝑢0

𝑑𝑥

𝑑𝑣0

𝑑𝑥
− 3

𝐵13

𝑡

𝑑𝑢0

𝑑𝑥

𝑑2𝑤

𝑑𝑥𝑑𝑦
−

𝐵13

𝑡

𝑑𝑣0

𝑑𝑥

𝑑2𝑤

𝑑𝑥2

+ 2𝐷13

𝑑2𝑤

𝑑𝑥2

𝑑2𝑤

𝑑𝑥𝑑𝑦
) 

+2 ( 
𝐴23

𝑡2

𝑑𝑢0

𝑑𝑦

𝑑𝑣0

𝑑𝑦
 +

𝐴23

𝑡2

𝑑𝑣0

𝑑𝑦

𝑑𝑣0

𝑑𝑥
− 3

𝐵23

𝑡

𝑑𝑣0

𝑑𝑦

𝑑2𝑤

𝑑𝑥𝑑𝑦

−
𝐵23

𝑡

𝑑𝑢0

𝑑𝑦

𝑑2𝑤

𝑑𝑦2
+ 2𝐷23

𝑑2𝑤

𝑑𝑦2

𝑑2𝑤

𝑑𝑥𝑑𝑦
)} 𝑑𝑥 . 𝑑𝑦  

–
𝑚𝜆2

2
∬(𝑤)2   𝑑𝑥 𝑑𝑦                                       14 

If we assume m to stands for number of a lamina in the plate 

while n is the total number of laminas and: 

Where: 

  𝐴𝑖𝑗 = 
 𝐴𝑖𝑗
̅̅ ̅̅

𝑡
   𝑎𝑛𝑑   𝐴𝑖𝑗

̅̅ ̅̅ = 𝑡 ∑ 𝑎𝑖𝑗(𝑠𝑚 − 𝑠𝑚−1)

𝑚=𝑛

𝑚=1

 15 

 𝐵𝑖𝑗 =
𝐵𝑖𝑗
̅̅̅̅

𝑡2
 𝑎𝑛𝑑  𝐵𝑖𝑗

̅̅̅̅ =
𝑡2

2
∑ 𝑎𝑖𝑗(𝑠𝑚

2 − 𝑠𝑚−1
2 )

𝑚=𝑛

𝑚=1

     16 

 𝐷𝑖𝑗 =
𝐷𝑖𝑗
̅̅ ̅̅

𝑡3
 𝑎𝑛𝑑 𝐷𝑖𝑗

̅̅ ̅̅ . =
𝑡3

3
∑ 𝑎𝑖𝑗(𝑠𝑚

3 − 𝑠𝑚−1
3 )

𝑚=𝑛

𝑚=1

    17 

"m" stands for the number of a lamina in the laminated plate, 

n is the total number of laminas "s" is the non dimensional co-

ordinate along z-axis defined as s = z/t. 

Let the summation of the following three constants be one. 

That is: 

𝑛1 + 𝑛2 + 𝑛3 = 1                              (18)          

Substituting Equation 18 into Equation 14 to multiply the free vi-
bration coefficient, 𝑚𝜆2 (that is: 𝑚𝜆2= n1 𝑚𝜆2+ n2 𝑚𝜆2 + 

n3 𝑚𝜆2) and  rearranging the resulting gives Equation 19 

Π = Π1 + Π2 + Π3                                                              (19) 

Π1 =
𝐸0𝑡

3

2
∬{ (

𝐴11

𝑡2
[
𝑑𝑢0

𝑑𝑥
]
2

+ 2
𝐴12

𝑡2

𝑑𝑢0

𝑑𝑥

𝑑𝑣0

𝑑𝑦
+

𝐴33

𝑡2
[
𝑑𝑢0

𝑑𝑦
]
2

 

+ 2
𝐴33

𝑡2

𝑑𝑢0

𝑑𝑦

𝑑𝑣0

𝑑𝑥
+

𝐴33

𝑡2
[
𝑑𝑣0

𝑑𝑥
]
2

+
𝐴22

𝑡2
[
𝑑𝑣0

𝑑𝑦
]
2

) 

−2(
𝐵11

𝑡

𝑑𝑢0

𝑑𝑥
.
𝑑2𝑤

𝑑𝑥2
+

(𝐵12 + 2𝐵33)

𝑡

𝑑𝑢0

𝑑𝑦

𝑑2𝑤

𝑑𝑥𝑑𝑦

+
(𝐵12 + 2𝐵33)

𝑡

𝑑𝑣0

𝑑𝑥

𝑑2𝑤

𝑑𝑥𝑑𝑦
+

𝐵22

𝑡

𝑑𝑣0

𝑑𝑦

𝑑2𝑤

𝑑𝑦2
) 
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+(𝐷11 [
𝑑2𝑤

𝑑𝑥2
]

2

+ 2(𝐷12 + 2𝐷33) [
𝑑2𝑤

𝑑𝑥𝑑𝑦
]

2

+ 𝐷22 [
𝑑2𝑤

𝑑𝑦2
]

2

 ) – 𝑛1

𝑚𝜆2

2
∬(𝑤)2   𝑑𝑥 𝑑𝑦        20𝑎 

Π2

=
2𝐸0𝑡

3

2
∬ [

𝐴13

𝑡2

𝑑𝑢0

𝑑𝑥

𝑑𝑢0

𝑑𝑦
+

𝐴13

𝑡2

𝑑𝑢0

𝑑𝑥

𝑑𝑣0

𝑑𝑥
− 3

𝐵13

𝑡

𝑑𝑢0

𝑑𝑥

𝑑2𝑤

𝑑𝑥𝑑𝑦

−
𝐵13

𝑡

𝑑𝑣0

𝑑𝑥

𝑑2𝑤

𝑑𝑥2

+ 2𝐷13

𝑑2𝑤

𝑑𝑥2

𝑑2𝑤

𝑑𝑥𝑑𝑦
]  𝑑𝑥 . 𝑑𝑦  – 𝑛2

𝑚𝜆2

2
∬(𝑤)2   𝑑𝑥 𝑑𝑦   20𝑏 

Π3

=
2𝐸0𝑡

3

2
∬ [

𝐴23

𝑡2

𝑑𝑢0

𝑑𝑦

𝑑𝑣0

𝑑𝑦
 +

𝐴23

𝑡2

𝑑𝑣0

𝑑𝑦

𝑑𝑣0

𝑑𝑥
− 3

𝐵23

𝑡

𝑑𝑣0

𝑑𝑦

𝑑2𝑤

𝑑𝑥𝑑𝑦

−
𝐵23

𝑡

𝑑𝑢0

𝑑𝑦

𝑑2𝑤

𝑑𝑦2

+ 2𝐷23

𝑑2𝑤

𝑑𝑦2

𝑑2𝑤

𝑑𝑥𝑑𝑦
]  𝑑𝑥 . 𝑑𝑦 – 𝑛3

𝑚𝜆2

2
∬(𝑤)2   𝑑𝑥 𝑑𝑦          20𝑐 

The meaning for z, m and n for easy understanding is illus-

trated with the laminated plate of four laminas that is shown 

on Figure 1 

 

 
 
 
 
 
 
 
 
 
 
 

3.1 General and direct Variation of Total potential 
energy functional for a laminated thin 
rectangular plate 

Minimizing Equations 20a, 20b and 20c with respect to w, u0 
and v0 and making some rearrangements shall give the respec-
tive equations: 

∂Π1

∂w
= 0 = ∬[−

1

𝑡
(𝐵11

𝜕3𝑢0

𝜕𝑥3
+ (𝐵12 + 2𝐵33)

𝜕3𝑢0

𝜕𝑥𝜕𝑦2

+ (𝐵12 + 2𝐵33)
𝜕3𝑣0

𝜕𝑥2𝜕𝑦
+ 𝐵22

𝜕3𝑣0

𝜕𝑦3
)

+ (𝐷11

𝜕4𝑤

𝜕𝑥4
+ 2(𝐷12 + 2𝐷33)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2

+ 𝐷22

𝜕4𝑤

𝜕𝑦4
 )] 𝑑𝑥𝑑𝑦  

+
𝑛1𝑚𝜆2

𝐸0𝑡
3

∬ 𝑤 𝑑𝑥 𝑑𝑦        21𝑎 

∂Π2

∂w
= 0 =

1

𝑡
∬

𝜕2

𝜕𝑥2
(−3𝐵13

𝜕𝑢0

𝜕𝑦
− 𝐵13

𝜕𝑣0

𝜕𝑥
+ 4𝐷13

𝜕2𝑤

𝜕𝑥𝜕𝑦
)   𝑑𝑥𝑑𝑦

+
𝑛2𝑚𝜆2

𝐸0𝑡
3

∬ 𝑤 𝑑𝑥 𝑑𝑦                 21𝑏 

∂Π3

∂w
= 0 =

1

𝑡
∬

𝜕2

𝜕𝑦2
(−3𝐵23

𝜕𝑣0

𝜕𝑥
− 𝐵23

𝜕𝑢0

𝜕𝑦
+ 4𝐷23

𝜕2𝑤

𝜕𝑥𝜕𝑦
)   𝑑𝑥𝑑𝑦 

+
𝑛3𝑚𝜆2

𝐸0𝑡
3

∬ 𝑤 𝑑𝑥 𝑑𝑦                 21𝑐 

𝜕Π1

𝜕𝑢0

= 0 =
1

𝑡2
∬(

𝑑2

𝑑𝑥2
[𝐴11𝑢0 − 𝐵11

𝑑𝑤

𝑑𝑥
]

+
𝑑2

𝑑𝑥𝑑𝑦
[𝐴12𝑣0 − 𝐵12

𝑑𝑤

𝑑𝑦
]

+
𝑑2

𝑑𝑥𝑑𝑦
[𝐴33𝑣0 − 𝐵33

𝑑𝑤

𝑑𝑦
]

+
𝑑2𝑢0

𝑑𝑦2
[𝐴33𝑢0 − 𝐵33

𝑑𝑤

𝑑𝑥
])𝑑𝑥𝑑𝑦   22𝑎 

𝜕Π2

𝜕𝑢0

= ∬ (2
𝑑2

𝑑𝑥𝑑𝑦
[
𝐴13

𝑡2
𝑢0 −

𝐵13

𝑡

𝑑𝑤

𝑑𝑥
]

+
𝑑2

𝑑𝑥2
[
𝐴13

𝑡2
𝑣0 −

𝐵13

𝑡

𝑑𝑤

𝑑𝑦
])   𝑑𝑥𝑑𝑦 = 0      22𝑏 

𝜕Π3

𝜕𝑢0

= ∬
𝑑2

𝑑𝑦2
[
𝐴23

𝑡2
𝑣0  −

𝐵23

𝑡

𝑑𝑢𝑤

𝑑𝑦
]   𝑑𝑥𝑑𝑦 = 0                         22𝑐 

𝜕Π1

𝜕𝑣0

= ∬ [
𝑑2

𝑑𝑥𝑑𝑦
([

𝐴12

𝑡2
𝑢0  −

𝐵12

𝑡

𝑑𝑤

𝑑𝑥
] +

𝑑2

𝑑𝑦2
[
𝐴22

𝑡2
𝑣0 −

𝐵22

𝑡

𝑑𝑤

𝑑𝑦
]

+
𝑑2

𝑑𝑥𝑑𝑦
[
𝐴33

𝑡2
𝑢0 −

𝐵33

𝑡

𝑑𝑤

𝑑𝑥
]

+
𝑑2

𝑑𝑥2
[
𝐴33

𝑡2
𝑣0 −

𝐵33

𝑡

𝑑𝑤

𝑑𝑦
])] 𝑑𝑥𝑑𝑦 = 0    23𝑎 

𝜕Π2

𝜕𝑣0

= ∬
𝑑2

𝑑𝑥2
[
𝐴13

𝑡2
𝑢0 −

𝐵13

𝑡

𝑑𝑤

𝑑𝑥
]   𝑑𝑥𝑑𝑦 = 0                  23𝑏 

 

Figure 1: A laminated plate that is made of four laminas 

𝐿𝑎𝑚𝑖𝑛𝑎 1: 𝑚 = 1;  𝑧𝑚−1 = 𝑧0;   𝑧𝑚 = 𝑧1 
 

𝐿𝑎𝑚𝑖𝑛𝑎 2: 𝑚 = 2;  𝑧𝑚−1 = 𝑧1;   𝑧𝑚 = 𝑧2 

𝐿𝑎𝑚𝑖𝑛𝑎 3:𝑚 = 3 ;   𝑧𝑚−1 = 𝑧2;   𝑧𝑚 = 𝑧3 

𝐿𝑎𝑚𝑖𝑛𝑎 4:𝑚 = 4;  𝑧𝑚−1 = 𝑧3;   𝑧𝑚 = 𝑧4 

𝑧0 = 𝑡 2⁄  

𝑧1 = 𝑡 4⁄  

𝑧2 = 0 

𝑧3 = −𝑡 4⁄  

𝑧4 = −𝑡 2⁄  
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𝜕Π3

𝜕𝑣0

= ∬ (
𝑑2

𝑑𝑦2
[
𝐴23

𝑡2
𝑢0  −

𝐵23

𝑡

𝑑𝑤

𝑑𝑥
]

+ 2
𝑑2

𝑑𝑥𝑑𝑦
[
𝐴23

𝑡2
𝑣0 −

𝐵23

𝑡

𝑑𝑤

𝑑𝑦
])  𝑑𝑥𝑑𝑦 = 0    23𝑐 

For Equations 22a, 22b, 22c, 23a, 23b and 23c to be true, the fol-
lowing shall hold (where c and d are yet to be determined con-
stants)): 

𝑢0 = 𝑡
𝐵𝑖𝑗

𝐴𝑖𝑗

𝜕𝑤

𝜕𝑥
= 𝑐. 𝑡

𝜕𝑤

𝜕𝑥
                      24𝑎 

𝑣0 = 𝑡
𝐵𝑖𝑗

𝐴𝑖𝑗

𝜕𝑤

𝜕𝑦
 = 𝑑. 𝑡

𝜕𝑤

𝜕𝑦
                        24𝑏 

Substituting Equations 24a and 24b into equation 21a and mak-
ing some rearrangements and observing that an integral can 
only be zero if its integrand is as shown in Equation 25: 

∬ ([𝐷11 − 𝑐𝐵11]
𝜕4𝑤

𝜕𝑥4

+ 2[𝐷12 − 𝑐𝐵12 − 𝑑𝐵12 + 2𝐷33 − 2𝑐𝐵33

− 2𝑑𝐵33]
𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ [𝐷22 − 𝑑𝐵22]

𝜕4𝑤

𝜕𝑦4

+
𝑛1𝑚𝜆2

𝐸0𝑡
3

. 𝑤) 𝑑𝑥𝑑𝑦 = 0     25 

Dividing equation 25 by [D22 - dB22] gives Equation 26: 

∬ [𝑓1
𝜕4𝑤

𝜕𝑥4
+ 𝑓2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
+

𝑛1𝑚𝜆2

𝐸0𝑡
3

. 𝑤] 𝑑𝑥𝑑𝑦 = 0            26 

𝑊ℎ𝑒𝑟𝑒:  𝑓1 =
[𝐷11 − 𝑐𝐵11]

[𝐷22 − 𝑑𝐵22]
;   𝑓2

=
2[𝐷12 − 𝑐𝐵12 − 𝑑𝐵12 + 2𝐷33 − 2𝑐𝐵33 − 2𝑑𝐵33]

[𝐷22 − 𝑑𝐵22]
 

The exact solution to Equation 26 is in polynomial form (in 

terms of non-dimensional coordinates) (see [14]] for details): 

𝑤 = (𝑎0 + 𝑎1𝑥 +
𝑎2

2!
𝑥2 +

𝑎3

3!
𝑥3 +

𝑎4

4!
𝑥4) (𝑏0 + 𝑏1𝑦 +

𝑏2

2!
𝑦2

+
𝑏3

3!
𝑦3 +

𝑏4

4!
𝑦4)           27𝑎 

From Equations 27a, it was gathered that: 

𝑤 = 𝛽1ℎ                                            27𝑏 

Substituting Equation 27b into Equations 24a and 24b gives: 

𝑢0 = 𝑐. 𝑡. 𝛽1

𝜕ℎ

𝜕𝑥
= 𝛽2

𝜕ℎ

𝜕𝑥
                                 28𝑎 

𝑣0 = 𝑑. 𝑡. 𝛽1

𝜕ℎ

𝜕𝑦
 = 𝛽3

𝜕ℎ

𝜕𝑦
                               28𝑏 

𝛽2 = 𝑐. 𝑡. 𝛽1  𝑎𝑛𝑑   𝛽3 = 𝑑. 𝑡. 𝛽1                       28𝑐 

Substituting Equations 27b, 28a and 28b into Equations 20a, 20b 

and 20c and writing the outcomes in terms of non dimensional 

coordinates gives: 

Π1 =
𝐸0𝑡

3𝑎𝑏

2𝑎4
∬ [(𝐴11𝛽2

2 (
𝜕2ℎ

𝜕𝑅2
)

2

+
1

𝛼2
[2𝐴12𝛽2𝛽3 + 2𝐴33𝛽2𝛽3 + 𝐴33𝛽2

2

+ 𝐴33𝛽3
2] (

𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2

+ 𝐴22

𝛽3
2

𝛼4
(
𝜕2ℎ

𝜕𝑄2
)

2

)

− 2(𝐵11𝛽1𝛽2 (
𝜕2ℎ

𝜕𝑅2
)

2

+ (𝐵12 + 2𝐵33)
𝛽1𝛽2

𝛼2
(

𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2

+ (𝐵12 + 2𝐵33)
𝛽1𝛽3

𝛼2
(

𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2

+ 𝐵22

𝛽1𝛽3

𝛼4
(
𝜕2ℎ

𝜕𝑄2
)

2

)

+ (𝐷11𝛽1
2 (

𝜕2ℎ

𝜕𝑅2
)

2

+ 2(𝐷12 + 2𝐷33)
𝛽1

2

𝛼2
(

𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2

+ 𝐷22

𝛽1
2

𝛼4
(
𝜕2ℎ

𝜕𝑄2
)

2

 )] 𝑑𝑅𝑑𝑄   

–
𝑛1𝑚𝜆2𝑎𝑏

2
𝛽1

2 ∬(ℎ)2 𝑑𝑅 𝑑𝑄                           29𝑎 

Π2 =
2𝐸0𝑡

3𝑎𝑏

2𝑎4
∬[𝐴13

𝛽2
2

𝛼

𝜕2ℎ

𝜕𝑅2
.

𝜕2ℎ

𝜕𝑅𝜕𝑄
+ 𝐴13

𝛽2𝛽3

𝛼

𝜕2ℎ

𝜕𝑅2
.

𝜕2ℎ

𝜕𝑅𝜕𝑄

− 3𝐵13

𝛽1𝛽2

𝛼

𝜕2ℎ

𝜕𝑅2

𝜕2ℎ

𝜕𝑅𝜕𝑄
− 𝐵13

𝛽1𝛽3

𝛼
.
𝜕2ℎ

𝜕𝑅2

𝜕2ℎ

𝜕𝑅𝜕𝑄

+ 2𝐷13

𝛽1
2

𝛼

𝜕2ℎ

𝜕𝑅2

𝜕2ℎ

𝜕𝑅𝜕𝑄
]   𝑑𝑅 . 𝑑𝑄

−
𝑛2𝑚𝜆2𝑎𝑏

2
𝛽1

2 ∬(ℎ)2 𝑑𝑅 𝑑𝑄      29𝑏 

Π3 =
2𝐸0𝑡

3𝑎𝑏

2𝑎4
∬[𝐴23

𝛽2𝛽3

𝛼3

𝜕2ℎ

𝜕𝑅𝜕𝑄
.
𝜕2ℎ

𝜕𝑄2
 + 𝐴23

𝛽3
2

𝛼3

𝜕2ℎ

𝜕𝑅𝜕𝑄
.
𝜕2ℎ

𝜕𝑄2

− 3𝐵23

𝛽1𝛽3

𝛼3

𝜕2ℎ

𝜕𝑅𝜕𝑄
.
𝜕2ℎ

𝜕𝑄2
− 𝐵23

𝛽1𝛽2

𝛼3

𝜕2ℎ

𝜕𝑅𝜕𝑄
.
𝜕2ℎ

𝜕𝑄2

+ 2𝐷23

𝛽1
2

𝛼3

𝜕2ℎ

𝜕𝑅𝜕𝑄
.
𝜕2ℎ

𝜕𝑄2
]   𝑑𝑅 . 𝑑𝑄

− 
𝑛3𝑚𝜆2𝑎𝑏

2
𝛽1

2 ∬(ℎ)2 𝑑𝑅 𝑑𝑄               29𝑐 

Minimizing Equations 29a, 29b and 29c with respect to β1 and 

rearrange gives respectively Equation 30: 
dΠ1

d𝛽1

= 0 = − (𝐵11𝛽2𝑘𝑥 + (𝐵12 + 2𝐵33)
𝛽2

𝛼2
𝑘𝑥𝑦

+ (𝐵12 + 2𝐵33)
𝛽3

𝛼2
𝑘𝑥𝑦 + 𝐵22

𝛽3

𝛼4
𝑘𝑦)

+ 𝛽1 (𝐷11𝑘𝑥 +
2

𝛼2
(𝐷12 + 2𝐷33)𝑘𝑥𝑦 +

𝐷22

𝛼4
𝑘𝑦 )

−
𝑛1𝑚𝜆2

𝐸0𝑡
3

𝛽1𝑘𝜆     30𝑎 

1765

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 11, Issue 4, April-2020                                                                                         
ISSN 2229-5518 
 

IJSER © 2020 

http://www.ijser.org  

dΠ2

d𝛽1

= 0 = (4𝐷13

𝛽1

𝛼
− 3𝐵13

𝛽2

𝛼

− 𝐵13

𝛽3

𝛼
)𝑘𝑥𝑥𝑦   –

𝑛2𝑚𝜆2

𝐸0𝑡
3

𝛽1𝑘𝜆      30𝑏 

dΠ3

d𝛽1

= 0 = (4𝐷23

𝛽1

𝛼3
− 𝐵23

𝛽2

𝛼3
− 3𝐵23

𝛽3

𝛼3
) 𝑘𝑥𝑦𝑦 –

𝑛3𝑚𝜆2

𝐸0𝑡
3

𝛽1𝑘𝜆    30𝑐 

Minimizing Equations 29a, 29b and 29c with respect to β2 gives 

Equation 31: 
dΠ1

d𝛽2

=
𝑎𝑏

𝑎4
[(𝐴11𝛽2𝑘𝑥 +

1

𝛼2
[𝐴12𝛽3 + 𝐴33𝛽2 + 𝐴33𝛽3]𝑘𝑥𝑦)

− 𝐵11𝛽1𝑘𝑥 − (𝐵12 + 2𝐵33)
𝛽1

𝛼2
𝑘𝑥𝑦] = 0    31𝑎 

dΠ2

d𝛽2

=
𝑎𝑏

𝑎4
[2𝐴13

𝛽2

𝛼
𝑘𝑥𝑥𝑦 + 𝐴13

𝛽3

𝛼
𝑘𝑥𝑥𝑦 − 3𝐵13

𝛽1

𝛼
𝑘𝑥𝑥𝑦] = 0     31𝑏 

dΠ3

d𝛽2

= 0 =
𝑎𝑏

𝑎4
⌈𝐴23

𝛽3

𝛼3
𝑘𝑥𝑦𝑦  − 𝐵23

𝛽1

𝛼3
𝑘𝑥𝑦𝑦⌉      31𝑐 

Minimizing Equations 29a, 29b and 29c with respect to 

𝛽3 gives Equation 32: 

dΠ1

d𝛽3

=
𝑎𝑏

𝑎4
[𝐴22

𝛽3

𝛼4
𝑘𝑦 +

1

𝛼2
[𝐴12𝛽2 + 𝐴33𝛽2 + 𝐴33𝛽3]𝑘𝑥𝑦

− 𝐵22

𝛽1

𝛼4
𝑘𝑦 − (𝐵12 + 2𝐵33)

𝛽1

𝛼2
𝑘𝑥𝑦]  

= 0                 32𝑎 

dΠ2

d𝛽3

= 0 =
𝑎𝑏

𝑎4
[𝐴13

𝛽2

𝛼
𝑘𝑥𝑥𝑦 − 𝐵13

𝛽1

𝛼
. 𝑘𝑥𝑥𝑦]                         32𝑏 

dΠ3

d𝛽3

= 0 =
𝑎𝑏

𝑎4
[𝐴23

𝛽2

𝛼3
𝑘𝑥𝑦𝑦  + 2𝐴23

𝛽3

𝛼3
𝑘𝑥𝑦𝑦 − 3𝐵23

𝛽1

𝛼3
𝑘𝑥𝑦𝑦]      32𝑐 

Where stiffness coefficients, 

  𝑘𝑥 = ∬ (
𝜕2ℎ

𝜕𝑅2
)

2

  𝑑𝑅 . 𝑑𝑄 ∶  𝑘𝑥𝑦 = ∬(
𝜕2ℎ

𝜕𝑅𝜕𝑄
)

2

  𝑑𝑅 . 𝑑𝑄  ∶  𝑘𝑦

= ∬ (
𝜕2ℎ

𝜕𝑄2
)

2

  𝑑𝑅 . 𝑑𝑄   

𝑘𝑥𝑥𝑦 = ∬
𝜕2ℎ

𝜕𝑅2

𝜕2ℎ

𝜕𝑅𝜕𝑄
  𝑑𝑅 . 𝑑𝑄 ∶ 𝑘𝑥𝑦𝑦 = ∬

𝜕2ℎ

𝜕𝑅𝜕𝑄
.
𝜕2ℎ

𝜕𝑄2
  𝑑𝑅 . 𝑑𝑄

∶  𝑘𝑞 = ∬ℎ   𝑑𝑅 . 𝑑𝑄  

𝑘𝑁 = ∬ (
𝑑ℎ

𝑑𝑅
)

2

  𝑑𝑅 . 𝑑𝑄 ∶  𝑘𝜆 = ∬ℎ2   𝑑𝑅 . 𝑑𝑄    

Adding the Equations 30a, 30b and 30c together and 

rearranging the outcome gives: 

dΠ

d𝛽1

=
dΠ1

d𝛽1

+
dΠ2

d𝛽1

+
dΠ3

d𝛽1

= 0.    𝑇ℎ𝑎𝑡 𝑖𝑠: 

dΠ

d𝛽1

= 𝛽1 (𝐷11𝑘𝑥 +
2

𝛼2
(𝐷12 + 2𝐷33)𝑘𝑥𝑦 +

𝐷22

𝛼4
𝑘𝑦  + 4

𝐷13

𝛼
𝑘𝑥𝑥𝑦

+ 4
𝐷23

𝛼3
𝑘𝑥𝑦𝑦) 

−𝛽2 (𝐵11𝑘𝑥 + (𝐵12 + 2𝐵33)
𝑘𝑥𝑦

𝛼2
+ 3𝐵13

𝑘𝑥𝑥𝑦

𝛼
+ 𝐵23

𝑘𝑥𝑦𝑦

𝛼3
) 

−𝛽3 ((𝐵12 + 2𝐵33)
𝑘𝑥𝑦

𝛼2
+ 𝐵22

𝑘𝑦

𝛼4
+ 𝐵13

𝑘𝑥𝑥𝑦

𝛼

+ 3𝐵23

𝑘𝑥𝑦𝑦

𝛼3
) –

𝑎4

𝐸0𝑡
3
(𝑛1 + 𝑛2

+ 𝑛3)𝑚𝜆2𝛽1𝑘𝜆  33𝑎 

Substituting Equation 18 into Equation 33a and rearranging the 
outcome gives Equation 33b: 

𝑚𝜆2𝑎4

𝐸0𝑡
3

𝛽1𝑘𝜆  = 𝛽1 (𝐷11𝑘𝑥 +
2

𝛼2
(𝐷12 + 2𝐷33)𝑘𝑥𝑦 +

𝐷22

𝛼4
𝑘𝑦  

+ 4
𝐷13

𝛼
𝑘𝑥𝑥𝑦 + 4

𝐷23

𝛼3
𝑘𝑥𝑦𝑦) 

−𝛽2 (𝐵11𝑘𝑥 + (𝐵12 + 2𝐵33)
𝑘𝑥𝑦

𝛼2
+ 3𝐵13

𝑘𝑥𝑥𝑦

𝛼

+ 𝐵23

𝑘𝑥𝑦𝑦

𝛼3
) 

−𝛽3 ((𝐵12 + 2𝐵33)
𝑘𝑥𝑦

𝛼2
+ 𝐵22

𝑘𝑦

𝛼4
+ 𝐵13

𝑘𝑥𝑥𝑦

𝛼

+ 3𝐵23

𝑘𝑥𝑦𝑦

𝛼3
)        33𝑏 

Adding the Equations 31a, 31b and 31c together and 

rearranging the outcome gives Equation 34: 

𝛽2 (𝐴12

𝑘𝑥𝑦

𝛼2
+ 𝐴33

𝑘𝑥𝑦

𝛼2
+ 𝐴13

𝑘𝑥𝑥𝑦

𝛼
+ 𝐴23

𝑘𝑥𝑦𝑦

𝛼3
)

+ 𝛽3 (𝐴22

𝑘𝑦

𝛼4
+ 𝐴33

𝑘𝑥𝑦

𝛼2
   + 2𝐴23

𝑘𝑥𝑦𝑦

𝛼3
)

= 𝛽1 (𝐵22

𝑘𝑦

𝛼4
+ (𝐵12 + 2𝐵33)

𝑘𝑥𝑦

𝛼2
+ 𝐵13

𝑘𝑥𝑥𝑦

𝛼

+ 3𝐵23

𝑘𝑥𝑦𝑦

𝛼3
)           34 

Solving Equations 33b and 34 simultaneously gives Equation 35: 

𝛽2 = 𝑇2𝛽1 = 𝛽1

(𝑑12. 𝑑23 − 𝑑13. 𝑑22)

(𝑑12
2 − 𝑑11𝑑22)

                35𝑎 

𝛽3 = 𝑇3𝛽1 = 𝛽1

(𝑑12. 𝑑13 − 𝑑11𝑑23)

(𝑑12
2 − 𝑑11𝑑22)

                        35𝑏 

Where: 

𝑑11 = 𝐴11𝑘𝑥 + 𝐴33

𝑘𝑥𝑦

𝛼2
+ 2𝐴13

𝑘𝑥𝑥𝑦

𝛼
                          36𝑎 

𝑑12 = 𝐴12

𝑘𝑥𝑦

𝛼2
+ 𝐴33

𝑘𝑥𝑦

𝛼2
+ 𝐴13

𝑘𝑥𝑥𝑦

𝛼
+ 𝐴23

𝑘𝑥𝑦𝑦

𝛼3
                     36𝑏 

𝑑22 = 𝐴22

𝑘𝑦

𝛼4
+ 𝐴33

𝑘𝑥𝑦

𝛼2
   + 2𝐴23

𝑘𝑥𝑦𝑦

𝛼3
             36𝑐  

𝑑13 = 𝐵11𝑘𝑥 + (𝐵12 + 2𝐵33)
𝑘𝑥𝑦

𝛼2
+ 3𝐵13

𝑘𝑥𝑥𝑦

𝛼
+ 𝐵23

𝑘𝑥𝑦𝑦

𝛼3
    36𝑑 
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  𝑑23 = 𝐵22

𝑘𝑦

𝛼4
+ (𝐵12 + 2𝐵33)

𝑘𝑥𝑦

𝛼2
+ 𝐵13

𝑘𝑥𝑥𝑦

𝛼
+ 3𝐵23

𝑘𝑥𝑦𝑦

𝛼3
  36𝑒 

Substituting Equations 35a and 35b into Equation 33b and 
rearranging gives: 

𝑚𝜆2𝑎4

𝐷0𝑡
3

𝑘𝜆 = 𝐸0 {(
𝐷11

𝐷0

𝑘𝑥 +
2

𝛼2
(
𝐷12

𝐷0

+ 2
𝐷33

𝐷0

) 𝑘𝑥𝑦 +
𝐷22

𝐷0

.
𝑘𝑦

𝛼4
 

+ 4
𝐷13

𝐷22

.
𝑘𝑥𝑥𝑦

𝛼
+ 4

𝐷23

𝐷22𝛼
3
𝑘𝑥𝑦𝑦)

−
𝑇2

𝐷0

(𝐵11𝑘𝑥 +
(𝐵12 + 2𝐵33)

𝛼2
𝑘𝑥𝑦 +

3𝐵13

𝛼
𝑘𝑥𝑥𝑦

+
𝐵23

𝛼3
𝑘𝑥𝑦𝑦)

−
𝑇3

𝐷0

(
(𝐵12 + 2𝐵33)

𝛼2
𝑘𝑥𝑦 +

𝐵22

𝛼4
𝑘𝑦 +

𝐵13

𝛼
𝑘𝑥𝑥𝑦

+
3𝐵23

𝛼3
𝑘𝑥𝑦𝑦)}        37 

Rearranging Equation 37 gives Equation 38: 

𝑚𝜆2𝑎4

𝐷0𝑡
3

=
𝑚𝜆2𝑎4

𝐷0
̅̅ ̅

= 𝐸0 (
𝑘𝑇1 + 𝑘𝑇2 + 𝑘𝑇3

𝑘𝜆

)            38 

Equation 38 is the exact displacement Equation for computing 
the free vibration of thin rectangular laminated composite plates 

Where: 

𝑘𝑇1 = (
𝐷11

𝐷0

𝑘𝑥 +
2

𝛼2
(
𝐷12

𝐷0

+ 2
𝐷33

𝐷0

) 𝑘𝑥𝑦 +
𝐷22

𝐷0

.
𝑘𝑦

𝛼4
 

+ 4
𝐷13

𝐷22

.
𝑘𝑥𝑥𝑦

𝛼
+ 4

𝐷23

𝐷22𝛼
3
𝑘𝑥𝑦𝑦)        40𝑎 

𝑘𝑇2 = −
𝑇2

𝐷0

(𝐵11𝑘𝑥 +
(𝐵12 + 2𝐵33)

𝛼2
𝑘𝑥𝑦 +

3𝐵13

𝛼
𝑘𝑥𝑥𝑦

+
𝐵23

𝛼3
𝑘𝑥𝑦𝑦)                 40𝑏 

𝑘𝑇3 = −
𝑇3

𝐷0

(
(𝐵12 + 2𝐵33)

𝛼2
𝑘𝑥𝑦 +

𝐵22

𝛼4
𝑘𝑦 +

𝐵13

𝛼
𝑘𝑥𝑥𝑦

+
3𝐵23

𝛼3
𝑘𝑥𝑦𝑦)      40𝑏 

4.0 Numerical examples 

A thin rectangular plate with orientation 0/90/90/0 having ma-
terial properties as follows: - G12/E2 = 0.5; V12 = 0.25; E1/E2 = 25, 
aspect ratio ranging from 1 to 2. It is required to determine fun-
damental natural frequency when the plate is undergoing free 
vibration considering the following end conditions SSSS, 
CCCC, CSCS, CSSS, SSSF and CCCF. SSSS represents a rectan-
gular composite plate with all edges simply supported, CCCC 
represent a rectangular composite plate with all edges clamped, 
CSCS represents a rectangular composite plate with two oppo-
site edges simply supported while the other two are clamped, 

CSSS, represents a rectangular composite plate with all the 
edges simply supported except the first edge that is clamped. 
SSSF represents a rectangular composite plate with all three 
edges simply supported while the fourth edge is free; CCCF 
represents a rectangular composite plate with two adjacent 
edges clamped while the other two are free.   The reference elas-
tic modulus, E0 is taken to be E2. Hence, 

𝑎4𝑚𝜆2

𝐷0𝑡
3

=
𝑎4𝑚𝜆2

𝐷0
̅̅ ̅

=
𝑎4𝑚𝜆2

𝐷2
̅̅ ̅

= 𝐸2 (
𝑘𝑇1 + 𝑘𝑇2 + 𝑘𝑇3

𝑘𝜆

)     41 

If the aspect ratio is a/b and the parameters are in terms of long 
length "b" then: 

𝑚𝜆2𝑏4 = [𝑚𝜆2𝑎4] × [𝑏 𝑎⁄ ]4 

The fundamental natural frequency analyses of SSSS, CCCC, CSCS, 
CSSS, SSSF and CCCF plates after satisfying the boundary condi-
tion using equations 27b are as shown in Table 1 using polynomial 
functions while considering the numbering pattern shown in fig-
ure 1.  
 
 
 
 
 
 
 

Table 1: Plate displacement equation considering polynomial 

function 

Plates End 

conditions 

Deflection equation  

SSSS plate 
 

𝑊 = 𝛽1ℎ = 𝛽1(𝑅 − 2𝑅3 + 𝑅4)(𝑄 − 2𝑄3 + 𝑄4) 

CCCC plate  

 

𝑊 = 𝛽1ℎ = 𝛽1(𝑅
2 − 2𝑅3 + 𝑅4)(𝑄2 − 2𝑄3 + 𝑄4)    

CSCS plate  
 

𝑊 = 𝛽1ℎ = 𝛽1(𝑅
2 − 2𝑅3 + 𝑅4)(𝑄 − 2𝑄3 + 𝑄4) 

CSSS Plate 

 

𝑊 = 𝛽1ℎ = 𝛽1(1.5𝑅2 − 2.5𝑅3 + 𝑅4)(𝑄 − 2𝑄3

+ 𝑄4) 

 

CCCF plate 

 
𝑊 = 𝛽1ℎ = 𝛽1(𝑅

2 − 2𝑅3 + 𝑅4)(2.8𝑄2 − 5.2𝑄3

+ 3.8𝑄4 − 𝑄5) 

SSSF plate 
 𝑊 = 𝐶1(𝑅 − 2𝑅3 + 𝑅4) (

7𝑄

3
−

10𝑄3

3
+

10𝑄4

3
− 𝑄5) 

 

The stiffness coefficients obtained by considering the displace-
ment function shown in table 1 are presented in table 2 

 

 

 

 

 

 

 

 

 

 

 

Edge 4 

E
d

g
e 

3
 Edge 2 

E
d

g
e 

1
 

Figure 1:  Numbering pattern of the plate’s edges. 
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Table 2: Stiffness coefficients (k-vakues) for different plate boundary conditions 

PLATE TYPE 𝐾𝑥 𝐾𝑥𝑦 𝐾𝑦 𝐾𝑥𝑥𝑦 𝐾𝑥𝑦𝑦 𝐾𝜆 

SSSS 0.2362 0.2359 0.2362 0 0 0.02421 

CCCC 0.00127 0.000361 0.00127 0 0 0.0000252 

CSCS 0.039365 0.009233 0.007619 0 0 0.0000781 

CSSS 0.088571 0.041629 0.036192 0 0 0.000371 

SSSF 4.025763 1.033074 0.187451 0 0 0.041269 

CCCF 0.048463 0.0035983 0.004151 0 0 0.000095921 

 
4.1 Results and Discussions 

Substituting the values of stiffness coefficient and material properties given in the question to Equation 41 yields results pre-

sented on Table 3 in terms of long length of the plate.  

From Table 3 and Figure 2 one will observed that with constant E1/E2, increases in aspect ratio will cause decrease in the value of 
resonating frequencies no matter the boundary condition under consideration. It can also be seen that that the percentage differ-
ence between the CCCC Plates and SSSS PLATE is more than 50%. The maximum resonating frequency occurs when the aspect 
ratio (a/b) is equal to unity (square plate) with maximum coefficient value of 5.877, when the aspect ratio (a/b) is equal to 2 the 
minimum resonating frequency coefficient value is equal to 2.356. The boundary condition that produces the least resonating 
frequency is SSSF 

Table 3: Natural frequencies for different boundary conditions in terms of long length “a" from the present study, (√
𝐷22

𝑎4𝑚
) ÷ П2 

for aspect ratio of 1 to 2. 

Orientation = 0/90/90/0     𝐺12/𝐸2  =  0.5;        𝜇12  =  0.25, 𝐸1/𝐸2  =  25 

∝ = a/b SSSS CCCC CSCS CSSS SSSF CCCF 

1 
2.671051031 5.877415404 5.497061633 2.945760301 2.390573623 5.404786492 

1.1 
2.590119836 5.722346299 5.456083289 2.788531617 2.381646804 5.387875475 

1.2 
2.534811574 5.620125956 5.428430526 2.681235566 2.375230705 5.376644253 

1.3 
2.495762559 5.550519087 5.409045097 2.606029318 2.370462636 5.368885221 

1.4 
2.467388213 5.501726554 5.395007856 2.551996037 2.366820425 5.3633427 

1.5 
2.446240681 5.466630316 5.384557356 2.51228465 2.363973502 5.359268518 

1.6 
2.430122619 5.440798811 5.376588688 2.4824894 2.361704485 5.356198699 

1.7 
2.417592496 5.421392169 5.370384849 2.459710215 2.359865699 5.353835323 

1.8 
2.407679401 5.406541986 5.36546645 2.441995554 2.35835397 5.351981176 

1.9 
2.399713601 5.394989227 5.361504383 2.428004701 2.357095431 5.350502144 

2.0 
2.393223002 5.385866829 5.358267331 2.416798626 2.356036051 5.349304817 
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Figure 2: Graph of natural frequencies against aspect ratio for different boundary conditions. 

5.0 Conclusion  
The resonating frequency is minimum when the thin laminated 

composite plate has three simply supported edges with one free 

edge, the aspect ratio these occur was two (2). The maximum res-

onating frequency occurs when all the edges are clamped with 

aspect ratio of one. This is because of the rigidity of the clamped 

boundary condition. 
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